

La monografia sui PCB: PCB e melanoma

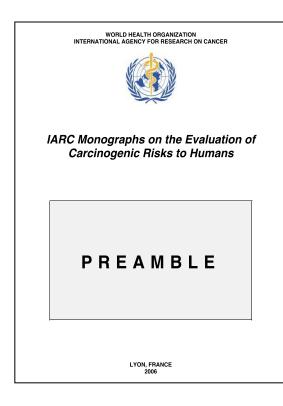
International Agency for Research on Cancer Lyon, France

Béatrice Lauby-Secretan, PhD Section of the IARC Monographs

http://monographs.iarc.fr/

Outline

- The IARC Monographs
 - Procedure
 - Evaluation
- PCB and melanoma
 - Cohort studies
 - Case-control studies
 - Mechanistic data
 - Evaluation


How are evaluations conducted?

arch on Cancer

Published guidelines & procedures

- Participant selection
- Conflict of interest
- Data eligibility
- Review of evidence
- Decision process for overall evaluations
- Public participation

Who does the evaluation?

Attend meetings but do not write reviews or contribute to evaluations

IARC Secretariat

Coordinates all aspects of the evaluation

Working Group

Independent scientists
without conflict of
interest
Review science and
develop evaluations

Invited Specialists

Scientists with relevant knowledge but a competing interest

Representatives

of governments and health agencies

Observers

Scientists with a competing interest: observe but do not influence outcomes

What evidence is considered?

Publicly available scientific data

- Peer-reviewed articles
- Government reports

Available in enough detail for critical review

Cancer in humans

Cancer in Experimental animals

Mechanistic and other relevant data

Exposure Data

Overall Evaluation

What are the IARC classifications?

Carcinogenic to humans	Group 1
Probably carcinogenic to humans	Group 2A
Possibly carcinogenic to humans	Group 2B
Not classifiable as to carcinogenicity	Group 3
Probably not carcinogenic to humans	Group 4

- IARC classifications refer to the strength of scientific evidence (the level of certainty that the agent causes cancer)
- They DO NOT reflect the level of carcinogenic risk

How are the data evaluated?

Cancer in humans

lack of carcinogenicity

Cancer in Experimental animals

Mechanistic and other relevant data

Causal relationship has been established
Chance, bias, and confounding could be ruled out with reasonable confidence

Causal interpretation is credible
Chance, bias, or confounding could not be ruled out

Inadequate evidence

Studies permit no conclusion about a causal association

Evidence suggesting

Adequate studies covering the full range of exposure are

level of exposure

consistent in not showing a positive association at any

EVIDENCE IN HUMANS

How are overall evaluations determined?

EVIDENCE IN EXPERIMENTAL ANIMALS

Sufficient

Limited

Inadequate

Carcinogenic to humans (Group 1)

Limited

Inadequate

Examples Group 1

- Asbestos
- Tobacco smoking

EVIDENCE IN HUMANS

How are overall evaluations determined?

EVIDENCE IN EXPERIMENTAL ANIMALS

Limited

Inadequate

Sufficient

Examples Group 2A

- DDT
- Tetrachloroethylene

Inadequate

How are overall evaluations determined?

EVIDENCE IN EXPERIMENTAL ANIMALS

Sufficient

Possibly carcinogenic (Group 2B)

Inadequate

Possibly carcinogenic (Group 2B)

International Agency for Research on Cancer

EVIDENCE IN HUMANS

Examples Group 2B

- Chloroform
- Styrene

How are overall evaluations determined?

EVIDENCE IN EXPERIMENTAL ANIMALS

Sufficient

Sufficient

Limited

Not classifiable (Group 3)

How are overall evaluations determined? Mechanistic modifications

EVIDENCE IN EXPERIMENTAL ANIMALS

Sufficient

Limited

Inadequate

EVIDENCE IN HUMANS Group 1 (carcinogenic to humans) ient 2A Grd Limited rcinogenic) (probably Group 2B Inadequate (possibly carcinogenic)

Strong evidence in exposed humans

Group 2B (possibly careinogenic)

(exceptionally, Group 2A)

Group 3 (not classifiable)

The IARC Monographs process

M+2 **M-12** M-10 **M-8** M+6M + 12M M+8 Writing assignments Selection of intervention Final read Scientific editing Monograph meeting Selection experts (print, on-line, e-pub) **Publication**

Outline

- The IARC Monographs
 - Procedure
 - Evaluation
- PCB and melanoma
 - Cohort studies
 - Case-control studies
 - Mechanistic data
 - Evaluation

Skin toxicity of PCBs

- Studies on exposure of capacitor workers to PCBs suggested that these compounds are well absorbed by skin contact
- Chloracne and other dermal alterations are well known effects of long-term exposure to PCBs and related compounds
- Interference of PCBs with the metabolism of vitamin A in the skin, resulting in disturbances of the epithelial tissues of the pilo-sebaceous duct (Coenraads et al., 1994).

Studies assessing the link between exposure to PCBs and cancer (≤ 2012)

Cohorts

- Occupational cohort studies (n=13)
- Cohorts of accidental exposure (Yusho, Yucheng, with 4 follow-up each)
- Cohorts of high dietary exposure (fishermen's wives) (n=5)
- General population cohorts (n=15)

Case-controls

- Non-Hodgkin lymphoma (n=17)
- Breast (n=32)
- Other sites (prostate, testis, lung, pancreas, biliary tract, colorectum, endometrium, skin, uveal melanoma, children leukemia)

1.a Cohort studies in capacitormanufacturing workers

Ruder et al.	3569 Melan	Cumulative exposure			
(2006),	oma	Lowest tertile	5	SMR, 3.7 (1.2-8.7)	Sex, age, race, calendar period
Indiana, USA, 1957–1998		Middle tertile	2	SMR, 1.5 (0.2-5.4)	_
		Highest tertile	9	SMR, 2.4 (1.1–4.6)	P for trend = 0.72
Prince et al.	14 458 Melan	Cumulative exposure			Sex, age, race, calendar period
(2006b),	oma	< 150 unit-yr		1	Results for 0-yr lag
Massachusetts & New York,		150 to < 620 unit-yr	2	RR, 0.3 (0.1–1.3)	
USA,		> 620 unit-yr	6	RR, 0.7 (0.2-1.9)	P for trend = 0.83
1939–1998					
		Workers employed ≥ 90 days			
		All workers	19	SMR, 1.26 (0.76-1.97)	
		Male	14	SMR, 1.66 (0.91-2.79)	
		Female	5	SMR, 0.75 (0.24-1.75)	
		New York	14	SMR, 1.79 (0.98-3.00)	
		Massachusetts	5	SMR, 0.69 (0.22-1.61)	
Kimbrough et al. (2003), New York, USA, 1946–1998	7075 Skin, includi ng melan	Hourly workers (employed ≥ 90 days as non-salaried workers)	9	[SMR, 1.2 (0.6–2.4)]	Sex, age, race, calendar period
r	oma	Salaried workers	6	[SMR, 2.1 (0.8-4.7)]	Same plant as Prince et al. (2006b)
World Health					

1.b Cohort study in transformer-manufacturing and -repairworkers

Yassi et al. (1994, 2003),					
Manitoba, Canada, 1946–1995; 1950–1995 (mortality); 1969–1995		> 6 mo	8	SMR, 1.8 (0.2–6.4)	13% excluded from original mortality study because of missing identifiers. Total of deaths until 1995: 261 in cohort, 104 in subcohort, 31 in transformer-assembly department
(incidence)		> 1 mo	10	SIR, 2.2 (1.1–4.0)	

1.c Cohort studies in electricpower and telecommunications workers

De Guire et al.	9590	> 6 mo	Men	3	SMR, 3.0 (0.6-8.8)	
(1988,		Exposed to	employment. ————————————————————————————————————	SMR, 4.8 (0.1–27)		
<mark>1992),</mark> Montreal,		polyvinyl chloride, soldering fumes,	Men, < 20 yr latency	2	SMR, 9.4 (1.1–34)	
Canada,		and PCBs	Men, > 20 yr latency	1	SMR, 1.3 (0.0-7.1)	
1976– 1983			Women, < 20 yr latency	1	SMR, 12.1 (0.0–67)	
Tynes et al. (1994),	5088	Worked ³ 1 yr at any of eight	Employment > 1 yr	19	SIR, 1.1 (0.7–1.8)	
Norway, 1920–	men	hydroelectric- power companies	Ever exposed to PCBs	9	SIR, 1.8 [0.8–3.4]	Incidence of other cancers
1991; 1953–			Ever exposed to PCBs, 0–15 µT-yr	0		not analysed in association
1991	cy for Re	search on Cancer	Ever exposed to PCBs, > 15 µT-yr	9	SIR, 2.7 [1.2–5.2]	with PCB exposure

1.c Cohort studies in electric-power and telecommunications workers (contnd)

Loomis et al.	138 905	Potential PCB exposure:			Age,
(1997),	men	0 to < 5 yr	25	RR, 1.3 (0.6–2.6)	calendar
California,		5 to < 10 yr	9	RR, 1.1 (0.5–2.7)	time, race,
North Carolina,		10 to < 20 yr	11	RR, 1.4 (0.6–3.3)	social class,
Pennsylvania,		³ 20 yr	8	RR, 1.6 (0.6–4.2)	active work
Tennessee,					status
Virginia, USA,		Cumulative PCB exposure (h),			
1950–1988		0-yr lag:			_
		> 0–2000	73	RR, 1.2 (0.6–2.5)	
		> 2000–10 000	12	RR, 1.7 (0.7–7.1)	_
		> 10 000	3	RR, 1.9 (0.5–7.1)	_
		Cumulative PCB exposure (h),			
		20-yr lag:			_
		> 0 to 2000	42	RR, 1.3 (0.8–2.2)	_
		> 2000–10 000	8	RR, 2.6 (1.1–6.0)	_
		> 10 000	1	RR, 4.8 (1.5–15)	-
		RR per 2000 h cumulative			
nternational Agency fo	r Research of	PCB exposure (continuous			
		variable):			
World Health Organization		0-yr lag	-	RR, 1.02 (0.99–1.05)	-
4 40 41341111111111111111111111111111111		20-yr lag	-	RR, 1.05 (1.01–1.09)	

1.d Cohort studies with other industrial exposures to PCBs

- Robinson et al., 1999
 - Proportional mortality study among 31'000 electrical workers employed in the construction industry
 - Excess mortality: PMR, 1.23 (1.02-1.47)
 - Exposure to PCB could not be confirmed (also exposure to other agents)
- Bahn et al., 1976
 - 2 cases of melanoma among 31 workers in research and development and refinery industry
 - SIR, 50.0 (95% CI, 5.6 217)

1.e Cohort studies with high dietary intake of PCBs

Reference, location, follow-up period	Total No. of subjects	Exposure assessment	Organ site	Exposure categories	Expos ed cases	Relative risk (95% CI)	Covariates Comments
Mikoczy & Rylander (2009) Sweden	2042 (east coast) and 6674 (west coast)	Dietary intake of fatty fish from Baltic Sea (east coast)	1	Comparison with national rates		SIR (95% CI)	Age Possible coexposure to PCDDs
1968–2002	fishermen's	West Coast	Melanoma		38	1.03 (0.73–1.41)	and PCDFs
(east coast)	wives		Skin		60	1.43 (1.09–1.84)	-
1965–2002		East coast	Melanoma		8	0.76 (0.33–1.49)	
(west coast)			Skin		9	0.95 (0.43-1.80)	
Helmfrid et	Residents in	Consumption of		Overall,		SIR (95% CI)	Age, time
al. (2012)	contaminated	I foods from		compared			period;
Gusum,	area (numbei	contaminated		with national			Possible
Sweden	not given)	local river		death rates			coexposure
1960–2003		Men	Melanoma		15	1.56 (0.87–3.94)	to metals
		Women	Melanoma		11	1.22 (0.60–2.19)	because of industrial activities

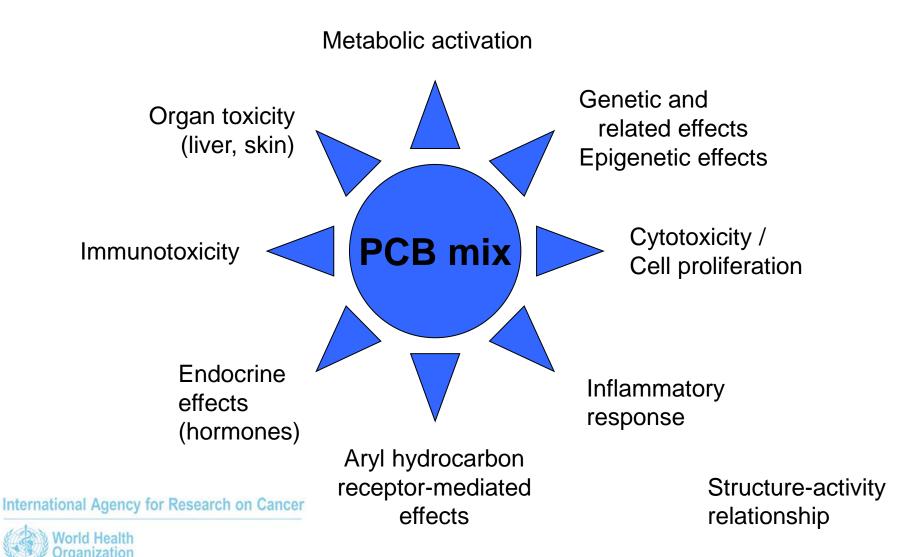
2. Population-based case-control study

Gallagher et al. (2011)
British Columbia, Canada
2000–2004
80 Cases
310 controls

Exposure assessment: Lipid-adjusted concentrations of 14 PCBs (units NR): PCB 28, 52, 99, 101, 105, 118, 128, 138, 153, 156, 170, 180, 183, and 187.

Exposure categories	Exposed cases	Relative risk (95% CI)	Covariates Comments
			Age, sex, education, skin reaction to repeated sun exposure, and total recreational sun exposure
Total PCBs			•
98.01-148.71	11	1.36 (0.45-4.09)	_
148.72–213.44	12	1.27 (0.39–4.12)	
> 213.44	29	6.02 (2.00–18.17)	P for trend < 0.001
DL-PCBs			
9.37-15.10	8	0.31 (0.10-0.98)	
15.11–22.57	16	1.16 (0.41–3.26)	
> 22.57	25	2.84 (1.01–7.97)	P for trend = 0.003
NDL-PCBs			
86.68-133.66	12	2.05 (0.66–6.39)	
133.67–192.39	11	1.19 (0.36–3.90)	
> 192.39	30	7.02 (2.30–21.43)	P for trend < 0.001
PCB-118			
> 4.90–8.16	13	0.89 (0.34-2.34)	
> 8.16–13.32	14	1.13 (0.40-3.23)	
> 13.32–46.19	23	3.04 (1.05-8.74)	P for trend = 0.012
PCB-138			
> 12.79–20.76	19	1.89 (0.68–5.28)	
> 20.76–30.65	8	1.30 (0.37-4.56)	
> 30.65–104.49	28	4.91 (1.69–14.32)	

Exposure categories	Expose cases	d Relative risk (95% CI)	Covariates Comments
PCB-153			
> 27.75–42.07	14	2.01 (0.70–5.77)	
> 42.07–60.43	12	1.35 (0.43–4.25)	
> 60.43–735.90	27	4.86 (1.68–14.08)	P for trend = 0.002
PCB-156			
> 4.09–6.07	13	1.04 (0.36–2.97)	
> 6.07–8.65	13	1.48 (0.49–4.45)	
> 8.65–113.32	29	4.22 (1.51–11.78)	P for trend = 0.001
PCB-170			
> 7.97–12.16	13	1.50 (0.53-4.29)	
> 12.16–18.51	13	1.10 (0.32–3.77)	
> 18.51–901.52	29	4.60 (1.60–13.22)	P for trend = 0.001
PCB-180			
> 25.20–38.16	12	1.46 (0.49–4.37)	
> 38.16–59.40	14	1.55 (0.44–5.43)	
> 59.40–3786.60	30	5.89 (1.87–18.50)	P for trend = 0.001
PCB-183			
> 1.87–84.86	54	4.27 (1.71–10.68)	
PCB-187			
> 6.64–10.45	11	2.54 (0.75–8.58)	
> 10.45–16.10	15	2.56 (0.76–8.62)	
> 16.10–833.15	30	11.47 (3.32–39.68)	P for trend < 0.001



3. Evaluation

- Elevated number of cancers observed consistently in studies of:
 - workers (cohorts in North America and Europe)
 - Manufacture of capacitors & transformers (four studies)
 - electric power and telecommunication workers (three studies)
 - equipment maintenance (two studies)
 - the general population, with measures of PCB levels in blood (case-control study in Canada)
- In the largest study, the risk increased with the dose
- Increase of uveal melanoma (cancer of the eye) in workers exposed to PCB oils
- ➤ There is *sufficient* evidence in humans for an association between exposure to PCBs and malignant melanoma

4. Relevant biological effects

The IARC Monographs Section

The *IARC Monographs* and Handbooks are supported by grants from:

- U.S. National Cancer Institute (since 1982)
- European Commission, DG Employment, Social Affairs and Inclusion (since 1986)
- U.S. National Institute of Environmental Health Sciences (since 1992)
- Institut National du Cancer (INCa), France
- U.S. Center for Disease Control (CDC)
- American Cancer Society

Molto grazie per l'invito