Monitoraggio ambientale e biologico degli IPA, nella caratterizzazione del loro rischio cancerogeno nell'asfaltatura

Pietro Apostoli, Ordinario di Medicina del Lavoro,

Università Studi di Brescia,

Direttore UO Medicina del Lavoro, Igiene Tossicologia Prevenzione Occupazionale,

ASST Spedali Civili Brescia

ASFALTATURA DA CONSIDERARE COME LAVORAZIONE ?

				TWA mg/m³		
		Note	ACGIH	NIOSH	OSHA	
Naftalene	A4		10 (ppm)	10 (ppm)	10 (ppm)	
Nero di carbone (Carbon black)	А3	Frazione inalabile	3.0	3.5 (0.1*)	3.5	
Polvere di carbone	A4	Anthracite, Respirabile	0.4			
Coal dust)		bituminous, Respirabile	0.9			
Catrame e pece di carbone (Coal tar pitch volatiles)	A1	Aerosol solubile in benzene	0.2	0.1	0.2	
Bitume Asphalt (bitumen) fume	A4	Aereosol inalabile, solubile in benzene	0.5	5 (15-min) as total particulates	/	
Oli minerali misti mediamente raffinati	A2		L	5	5	
Oli minerali misti altamente raffinati	A4	inalabile	5			

IPA sempre presenti in miscela : più di 100 IPA sono stati identificati nel particolato atmosferico e più di 200 nel fumo di tabacco

Gli IPA si formano durante i processi di combustione incompleta (specialmente se in carenza di ossigeno e con temperature di 650°-900°C) e per pirolisi di materiale organico, ma sono anche presenti in quanto tali nel carbon fossile e negli oli minerali crudi e raffinati

A temperatura ambiente gli IPA a 2-3-4 anelli si trovano normalmente anche allo stato di vapore, mentre quelli a 5-6 anelli si trovano normalmente allo stato solido

La pressione di vapore è un fattore determinante per la distribuzione di un IPA tra il particolato e la fase gassossa, specie con aumento PM

Classificazione IARC, evoluzione e stato attuale

	CAS	Vol 3 1973	Vol 32 1998	Vol 92 2010	Vol 100F 2012
1-metilcrisene	3351-28-8			3	
1-metilfenantrene				3	
2-metilcrisene	3351-32-4			3	
2-metilfluorantene	33543-31-6			3	
3-metilcrisene	3351-31-3			3	
3-metilfluorantene	1706-01-0			3	
4-metilcrisene	3351-30-2			3	
5-metilcrisene	3697-24-3			2B	
6-metilcrisene	1705-85-7			3	
Acenafene	83-32-9			3	
Acepirene	25732-74-5			3	
Antatrene	191-26-4		3	3	
Antracene	120-12-7		3	3	
Benz[l]aceantrilene	211-91-6			3	
Benzo(a)acridina	25-11-6		3		
Benzo(a)antracene	56-55-3	2A	2A	2B	
Benzo(a)fluorene	238-84-6		3		
Benzo(a)pirene	50-32-8	2A	2A	1	1
Benzo(b)fluorantene	205-99-2	2B	2B	2B	
Benzo(b)fluorene	243-17-4		3		

ACGIH

benzo(a)antrace, benzo(b)fluorantene, benzo(a)pirene A2

Crisene A3

Indicazioni

** L'esposizione dovrebbe essere attentamente controllata per mantenere i livelli più bassi possibili, senza dunque indicare alcun limite

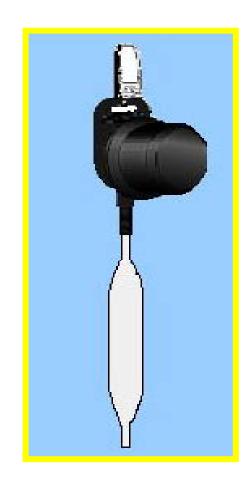
** IBE

Struttura	Composto	Peso molecolare	Punto di fusione (°C)	Punto di ebollizione (°C) ⁷⁶⁸	Struttura	Composto	Peso molecolare	Punto di fusione (°C)	Punto di ebollizione (°C) ⁷⁶⁸
8	N affalene	128,16	79	218	9	Benzo(b)fluorantene	252,32	168	481
	Antracene	178,24	216	340		Benzo(a)pirene	252,32	177	496
	Fenantrene	178,24	101	338			3		
	Acenaftilene	152,20	93	280		Benzo(k)fb1orantene	252,32	217	480
	Acenaftene	154,211	95	279		Indeno(1,2,3-cd)pirene	276,34	163,6	536
	Fhorere	166,22	116	295	88	Berzo(g,h,i)perilene	276,34	278	SSO
	Fluorantene	202,26	111	383	~~~				
	Pirene	202,26	156	393		Dibenzo(a,h)antracene	278,36	270	524
	Benzo(a)antracene	228,30	162	435	16 IPA	lista de	ei "p	rio	rity
Ω		8			10 a 11 . 144 .		J: [

441

228,30

256


polluttants" di EPA

Proposta attribuzione TEF a IPA

IPA e TEF	Formula	Nisbet, 1992	Clement , 1998	US-EPA, 1993
Naphthalene	C ₁₀ H ₈	0,001		
Acenaphthylene	C10H6(CH2)2	0,001		
Acenaphthene	C ₁₀ H ₆ (CH ₂) ₂	0,001		
Fluorene	C13H15	0,001		
Anthracene	C14H1B	0,01	0,32	
Phenanthrene	C14H1D	0,001		
Fluoranthene	C16H1B	0,001		
Pyrene	C16H1B	0,001	0,08	
Benzo(a)anthracene	C18H12	0,1	0,15	0,1
Chrysene	C18H12	0,01	0	0
Benzo(b)fluoranthene	C ₂₀ H ₁₂	0,1	0,14	0,1
Benzo(k)fluoranthene	C ₂₀ H ₁₂	0,1	0,07	0,01
Benzo(a)pirene	C ₂₀ H ₁₂	1	1	1
Dibenzo(a,h)anthracene	CzzH14	5	1,1	1
Benzo(g,h,i)perylene	C22H14	0,01	0,02	
Indeno(1,2,3-c,d)pirene	C22H12	0,1	0,23	0,1

CAMPIONAMENTAO CON SISTEMI COMBINATI

IOM con membrana teflon Fiala con resina (es. XAD2) compatibile con flusso 2 l/min (UNI EN 481/94)

MISURA DELL'ESPOSIZIONE CUTAEA AD IPA

PADS
WIPE TEST
(LAVAGGIO MANI)

- *Scelta superfici da esaminare
- *Cute scoperta
- * Sotto abiti lavoro

MONITORAGGIO AMBIENTALE

Si fonda sulla scelta di «traccianti» della miscela sulla base di criteri quantitativi e tossicologici

dal punto di vista quantitativo (acenaftene, antracene, benzo(ghi)perilene crisene, fenantrene, fluorantene, fluorene, naftalene e pirene)

dal punto di vista tossicologico (benzo[a]antracene, benzo[b]fluorantene, benzo[j]fluorantene benzo[k]fluorantene, benzo[a]pirene, dibenzo[a,l]pirene, dibenzo[a,e]pirene, dibenzo[a,h]antracene, indeno[1,2,3-cd] pirene, 5-metilcrisene)

MONITORAGGIO BIOLOGICO

Assorbimentoti per via inalatoria, gastrointestinale e cutanea

Trasporto in circolo ad organi metbolizzazione (deposito)

Metabolizzazione in composti attivi quali epossidi e diol epossidi, responsabili della cancerogenicità di alcuni IPA

Escrezione facilitata da coniugazione IPA glucoronati , solfatati, **fenoli e difenoli** che vengono eliminati con le feci o le urine

INDICATORI DI ESPOSIZIONE DOSE INTERNA

- -IPA tal quali
- METABOLITI
- -TEST MUTAGENESI
- ADDOTTI DNA PROTEINE (Dose efficace; early effect?)

INDICATORI DI EFFETTO

- -aberrazioni cromosomiche
- -scambi tra cromatidi fratelli
- -micronuclei
- -mutanti HPRT

Determinazione della concentrazione urinaria di IPA totali

(Becher & Bjorseth, 1983)

METODO:

- Estrazione degli IPA e dei loro metaboliti con resina C18
- Riduzione dei metaboliti degli IPA nei composti originari
- Analisi degli IPA con HPLC

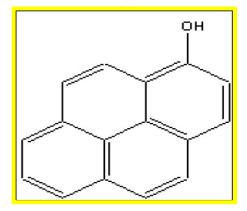
LIMITI:

- Basso recupero dei metaboliti coniugati con resina C18
- Perdita dei metaboliti durante il processo di riduzione e concentrazione

Benzo[a]pyrene (BaP) metabolites

the most part of Bap metabolites are excreted with faeces

3-HydroxyBaP is a major metabolite of BaP in vitro and is excreted in urine as its glucuronide.


r-7,*t*-8,9,*c*-10-Tetrahydroxy-7,8,9,10-tetrahydrobenzo[*a*]pyrene (*trans-anti*-BaP-tetraol) is a hydrolysis product of *anti*-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[*a*]pyrene, the major established ultimate carcinogen of BaP and can be detected in very highly PAH-exposed human urine.

.

METABOLITI URINARI "TRACCIA " PROPOSTI COME INDICATORI BIOLOGICI

- 1-NAFTOLO (Keimig et al., 1986)
- 3-IDROSSIBENZO(A)PIRENE (Jongeneelen et al., 1986)
- 1-IDROSSIPIRENE (Jongeneelen et al., 1986)
- IDROSSIFENANTRENI (Grimmer et al., 1987)

1-OH pirene urinario metabolita del pirene tracciante miscela IPA

La percentuale di trasformazione del pirene in 1-OH PIR è di circa il 90%; emivita 6-35 h

Sono state dimostrate buone correlazioni (r = 0,6 - 0,9) con IPA in aria, cute, totali e cancerogeni L'1-OHPIR è un metabolita presente nell'urina anche di soggetti non professionalmente esposti per

Fumo Cibi affumicati arrostiti Processi combustione, traffico

IMPORTANZA VR

TEST MUTAGENESI URINARIA

TEST DI AMES TIOETERI DISOLFURI URINARI

(ASPECIFICI PER PRESENZA ALTRI MUTAGENI URINARI)

EPIGENETICA

Studio di tutte le modificazioni ereditabili che variano l'espressione genica pur non alterando la sequenza del DNA (soprattutto con riferimento ai fenomeni a livello cellulare). E' una sovrapposizione al genotipo stesso di "un'impronta" che ne influenza il comportamento funzionale, ereditabile che non altera la sequenza nucleotidica di un gene, ma la sua attività. Queste mutazioni, dette epimutazioni, durano per il resto della vita della cellula e possono trasmettersi alle loro a generazioni successive

(Bertazzi et al 2012)

EPIGENETICA

"l'epigenetica ambientale richiede la collaborazione tra scienziati di base, epidemiologi, tossicologi e medici. Gli specialisti di medicina ambientale ed occupazionale sono pertanto in una posizione ideale per contribuire al progresso di questo campo di ricerca (Baccarelli 2015)

Epidem-Tox Framework

"Il passaggio da una valutazione qualitativa ad una quantitativa è necessario per poter prendere decisioni operative.

L'inferenza causale solo sulla base delle evidenze epidemiologiche è necessario si basi anche su valutazioni quantitative di tempo, risposta, forza associazione, plausibilità, coerenza, specificità"

(Moretto e La Vecchia 2015)